

Benha University Faculty of Science Department of Chemistry

Non-organic Chemistry M.Sc. Program Specification

Non-organic Chemistry M. Sc. Program Specification

A. Basic Information

Non-organic Chemistry M. Sc. Program Specification
Graduate (M. Sc.)
Chemistry Departement
Dr. Mostafa Y. Nassar
Prof. Dr. Wagdy I. El-Dougdoug

The most recent date of the program specification approval: 9/12/2015 (Faculty council; meeting number, 390)

B. Professional Information

1. Program Aims

Non-organic Chemistry M. Sc. Program is an academic program produced by Chemistry Department. It is goal-oriented, focused, research experience, community service, and development of important personal characteristics of the postgraduated students. The following are the aimed graduate attributes:

- a. Acquire the required fundamental and advanced knowledge to help to identify one or more problems in non-organic chemistry and solving them.
- b. Awareness of graduate role in community development and keeping the environment safe.
- c. Recognize extensive knowledge related to different branches of non-organic chemistry.
- d. Develop knowledge and skills necessary for independent learning and participate effectively in research activities in non-organic chemistry.
- e. Participate effectively as a member or leader in teamwork, able to make right scientific decision and behave in mannar reflecting integrity and credibility.
- f. Exploit the modern technology in searching and serving the professional practice.

2. Intended Learning Outcomes (ILO's)

a. Knowledge and Understanding

Benha University Faculty of Science Department of Chemistry

The postgraduates of the **Non-organic Chemistry** M. Sc. Program should be able to demonstrate the knowledge and understanding of:

- a1 State basics and theories of different branches of non-organic chemistry.
- a2 Define the ethical, basic, and quality principles of non-organic chemistry research.
- a3 Describe new techniques and instruments in non-organic chemistry.
- a4 Explain the current topics in organic chemical research their influence on the environment.
- a5 Recognize the scientific development in non-organic chemistry including chemical reactions and applications.

b. Intellectual Skills

The postgraduates of the Non-organic Chemistry M. Sc. Program should be able to:

- b1 Design research plan for development in non-organic chemistry.
- b2 Organize the collected data in the field of non-organic chemistry.
- b3 Interpret the organized and collected data.
- b4 Evaluate the collected data and the risks in experimentally non-organic chemistry research.
- b5 Propose chemical structures and their mechanisms based on interpretation of the collected results using different tools and instruments.
- b6 Formulate the scientific research results.
- b7 Report scientific decision on the problems and their solutions.

c. Professional and Practical Skills

On successful completion of the Postgraduates of the **Non-organic Chemistry** M. Sc. program should be able to:

- Apply basic and professional skills in preparation of different non-organic compounds.
- c2 Collect scientific data using various scientific tools.
- c3 Investigate scientifically the collected data based on the gained knowledge.
- c4 Examine applications of some non-organic compounds in different fields.
- c5 Prepare scientific reports or scientific research papers based on the collected data.
- c6 Plan to develop the professional practice and the performance of the co-workers during laboratory works.

d. General Skills

c1

The graduates of the Postgraduate of the **Non-organic Chemistry** M. Sc. Program should be able to:

- d1 Use computers and internet for communication, data handling and word processing.
- d2 Collaborate effectively with teamwork members to maintain independent and critical thinking, effective time-management and positive communication and cooperation with other members of the teamwork.
- d3 Use different sources for information and knowledge.
- d4 Manage tasks, time, and resources, effectively.
- d5 Search for information and engage in life-long self learning discipline.
- d6 Help raising public awareness of the benefits of conserving intellectual property rights and scientific patents on the individuals and communities.
- d7 Lead scientific meeting and mange time.

3- Academic standards of the program

The program outcomes are derived from the **Academic Reference Standards (ARS)** for postgraduate program published by the National Authority of Quality Assurance and Accreditation of Education in (2009).

4- Reference indices (Benchmarks)

The program outcomes are derived from the *Academic Reference Standards (ARS)* for postgraduate program published by the National Authority of Quality Assurance and Accreditation of Education in (2009).

5- Curricullum structure and contents of program

a- Program duration: 2-4 years.

b- Program structure:

Program structure	Credit hours
Compulsory courses	15
Optional courses	9
Research and preparing the M.Sc. thesis	24
Total	48

d- Program Courses:

Celle		No. of hours				
No.	No. Course Title		Practical	Credit hours		
The graduate studies total (24 hours)						
Compulsory courses (15 hours)						
601 Ch	Advanced analytical chemistry	2	-	2		
602 Ch	Advanced inorganic chemistry	3	-	3		
603 Ch	Applied quantum mechanics and thermo- dynamics	2	-	2		
604 Ch	Electrochemistry and kinetics	2	-	2		
605 Ch	Advanced physical organic chemistry	3	-	3		
606 Ch	Advanced organic chemistry	3	-	3		
	Optional courses (9 h	ours)				
607 Ch	Inorganic polymer chemistry and inorganic compounds	2	-	2		
608 Ch	Advanced radiochemistry	2	-	2		
609 Ch	Applied coordination chemistry	2	-	2		
610 Ch	Metal and alloy corrosion chemistry	2	-	2		
611 Ch	Kinetic chemistry	2	-	2		
612 Ch	Homogenous and hetrogenous catalysis	2	-	2		
613 Ch	Computational methods in quantum chem- istry	2	-	2		
614 Ch	Scientific writing	1	-	1		
615 Ch	Selected courses in analytical chemistry (1)	2	-	2		
616 Ch	Solid state chemistry	2	-	2		
617 Ch	Nuclear and radiochemistry	2	-	2		
618 Ch	Molecular spectroscopy and quantum theo- ry	2	-	2		
619 Ch	Chemical applications of group theory	2	-	2		
620 Ch	Advanced electrochemistry	2	-	2		
621 Ch	Applied chemistry	2	-	2		
24 credit hours for research and preparing the M. Sc. thesis						
699 Ch	Master thesis	-	-	24		

Courses specification:

See course specification forms

7- Program admission requirements

- The students registered in this program must have B.Sc. in chemistry or in double chemistry branches such as chemistry-goelogy and so on with a good grade.
 Students whom have pass grade in B.Sc. should take diplom in chemistry with very good grade.
- Students must enroll in M.Sc. program in five years from their B.Sc. year. Otherwise they must take diplom in chemistry then register in M.Sc. program.
- Get 3 computer courses.
- One establishment **seminar** approved by Chemistry Department Council.
- The student must pass at least the local TOEFL exam with 400 score.

8- Regulations for progression and program completion:

- According to the law of Faculty of Benha Science, the regulations for progression and program completion, the graduate must pass:
 - * 24 cr (credit hours) compulsory and optional hours.
 - * 24 cr (credit hours) for preparing the M. Sc. thesis.
- Student is considered absent, if he/she misses the final written exam with no accepted excuse.
- Student must complete their experimental research works and consequently their theses.

9- Methods and rules of evaluation of students in rolled in the program:

Optional courses evaluation:

	Method of Assessment	Percent
1-	Semester work	
2-	Mid Term Exam	
3-	Final Practical Exam	
4-	Final Oral Exam	20%
5-	Final Term Examination	80%
	Total	100%

Master Thesis evaluation:

Benha University Faculty of Science Department of Chemistry

- 5-1. The supervisors reports.
- 5-2. Individual Reports of the Judge Committee (Three specialist professors including the senior supervisor).
- 5-3. The Public Discussion
 - 5-4. The Common Report of the Judge Committee.
 - 5-5. Department, Faculty and University Boards.

• <u>Assessment Recommendations</u>:

- -The Judge Committee has to recommend one of the following:
- Accepting the thesis as it is.
- Accept the thesis and recommends awarding after correction performing.
- Delaying awarding for maximum three months to perform corrections.
- Re-displaying the thesis to the judge committee within limited period.
- Rejecting the thesis at all.

10- Methods of program evaluation:

Samples	Tool	Evaluators
1- Senior Students	Questionnaire	100%
2- Alumni	Questionnaire	100%
3- External Evaluators	Reports	

The person responsible for the program: Prof. Dr. Alaa S. Amin

Date: