University: Benha

Faculty of Science

Course specifications: Programme (s) on which the course is given: Biology **Major or minor element of programmes:** Major **Department of offering the programme:** Biology **Department offering the course:** chemistry **Academic year /Level:** 2nd year 2nd term **Date of specification approval:** 2008

A – Basic information		
Title: physical chemistry		Code: 241 CH
Credit Hours:		Lecture: 2 hours / week
Tutorial: 1 hr/w	Practical:	Total: 3 hrs/w

B – Professional Information

1. Overall aims of course: At the end of this course the student able to:

At end of this course student able to:

Focusing on the bases of physical chemistry, gas laws, thermochemistry and electrochemistry

2. Intended learning outcomes of course (ILOS)

a- Knowledge and understanding:

- At end of this course student able to:
- a1- Make the ideal and real gas laws.
- a2- Know the laws of thermochemistry.
- a3- The basic concepts of electrochemistry

b- Intellectual skills:

To be able to:

- b1- understand the gas behavior.
- b2- aware about the laws of thermodynamics.
- b3- know how the galvanic cells work.

c- Professional and practical skill:

- By the end of the course the student will be able to:
- c1- solve the problems regarding gas phase.
- c2- define the endothermic or exothermic nature of the chemical reaction.
- c3- calculate the emf of galvanic cell and the electrochemical reaction of electrolytic cell

d- General and transferable skills:

- d1- Use the computer
- d2- Communicate with topics and internet
- d3- Community linked thinking

3. Contents			
Торіс	No. of hours	Lecture	Tutorial
Gas laws	12	8	4
thermochemistry	12	8	4
Electrochemistry	12	8	4
Total	36	24	12

Teaching and Learning methods:

4.1-lectures

4.

5. Student assessment methods

- 5.1 Discussions to assess applying and evaluating the information
- 5.2 Practical to assess the acquired profession skills
- 5..3 Mid term exam to assess understanding intellectual skills
 - 5.4 End of term exam to assess knowledge with understanding

2-Assessment Schedule

Assessment 1: Discussions	Week 1-12
Assessment 2: Essay	Week 3
Assessment 3: Mid term	Week 7
Assessment 4: Final exam	Week 14
Weighting of assessments	
Mid term examination	5 %
Final term examination	80%
Oral examination	5%
Practical examination	%
Semester work	5 %
Other types of assessment	5 %
Total	100%
Any formative only assessments	

6. List of references

6.1- Course notes: Hand out notes

6.2-Essential text books: physical chemistry

R. A. Alberty, "physical Chemistry" 7th Ed. John Wiley & Sons 1992. - W. J. Moore "Physical Chemistry"; Prentice-Hall, 1983.

6.3- Recommended books

R. A. Alberty, "physical Chemistry" 7th Ed. John Wiley & Sons 1992.W. J. Moore "Physical Chemistry"; Prentice-Hall, 1983.

6.4-Periodicals

6.5- Web sites: www. sciencedirect.com6.7- workshop notes

7. Facilities required for teaching and learning

Data show- computer - projector and other recent text books (hard version, an electronic form and video practical courses)

Course coordinator: Dr.\ Ali yousry El-Etre **Head of Department:** Prof. Dr.\ Hassan A. Desoki **Date:**