University: Benha	Faculty of Science		
Course specifications:	-		
Programme (s) on which the	e course is given: BIOLOGY	7	
Major or minor element of	programmes: Major		
Department of offering the	programme: BIOLOGY		
Department offering the co	urse: Chemistry		
Academic year /Level: 2 nd y	ear $/2^{nd}$ term		
Date of specification approv	val: 2008		
A – Basic information			
Title: Practical physical chen	nistry	Code: 242 CH	
Credit Hours:		Practical: 4 hrs/w	Total: 4
hrs /w			
B – Professional Informatio	n		
1. Overal	ll aims of course: At the end	l of this course the student able to:	
Focusing on the bases of	physical chemistry.		
2. Intend	led learning outcomes of cou	arse (ILOS):	
a- Knowledge and understa	nding:		

At end of this course student able to:

al- Know the theoretical basis of experimental physical chemistry.

a2- Make the preparation of standard solutions.

a3- Make the ideal conditions of experimental process.

a4- select experimental of some experimental physical chemistry.

b- Intellectual skills:

None

c- Professional and practical skill:

By the end of the course the student will be able to:

c1- set the optimum conditions for an experimental process.

c2- data analysis

d- General and transferable skills:

d1- Use the computer

d2- Communicate with topics and internet

d3- Community linked thinking

3. **Contents:**

Topics	No. of hours	Practical
The theoretical basis of experimental physical chemistry. Determination of viscosity and density of liquid	8	8
Determination of the heat of solution.	4	4
Determination of the order of reaction of the catalytic decomposition of H_2O_2 .	8	8
Determination of the order of reaction of the saponification of ethylacetate.	4	4
Salting out effect	4	4
Phase equilibrium. Water-phenol system	8	8
Adsorption of solute on solid	4	4

Determination of Avogadro's number.	4	4
Revision and discussion	4	4
Total	48	48

Teaching and Learning methods:

4. 5.

4.1- practical experiments **Student assessment methods:**

- 5.1 Discussions to assess applying and evaluating the information
- 5.2 Practical to assess the acquired profession skills
- 5..3 Mid term exam to assess understanding intellectual skills
 - 5.4 End of term exam to assess knowledge with understanding

2-Assessment Schedule

Assessment 1: Discussions	Week 1-12
Assessment 2: Essay	Week 3
Assessment 3: Mid term	Week 7
Assessment 4: Final exam	Week 14

Weighting of assessments

Mid term examination	5 %
Final term examination	60%
Oral examination	5%
Semester work	30 %
Total	100%
Any formative only assessments	

List of references: 6.

6.1- Course notes: Hand out notes

6.2-Essential text books

Alexander Alexsive (Practical inorganic and analytical Chemistry), Mir Publisher (1995)

6.3- Recommended books

Alexander Alexsive (Practical inorganic and analytical Chemistry), Mir Publisher (1995)

6.4-Periodicals

6.5- Web sites: www.google.com

6.7- workshop notes

7. Facilities required for teaching and learning

Computers - Analytical balance - Glass wares and chemicals.

Course coordinator: Dr.\ I.S. AHMED

Head of Department: Prof. Dr.\ Hassan A. Desoki **Date:** / /